Back to Table of contents

Primeur weekly 2018-12-03

Quantum computing

University of Southern California scientists find a way to enhance the performance of quantum computers ...

An important step towards completely secure quantum communication networks ...

Quantum computing at scale: Australian scientists achieve compact, sensitive qubit readout ...

Atos launches construction of global R&D Lab to drive innovation in Quantum Computing ...

Focus on Europe

University of Liverpool and IBM sign joint study agreement for research and innovation ...

Atos strengthens computing capacity of national supercomputing centre in Czech Republic with the new BullSequana supercomputer ...

The whole fleet of EU Commission Flagship projects meets for the first time at ICT Vienna ...

Middleware

DDN Storage and CSIR-CEERI enter partnership to provide Artificial Intelligence as a Service solutions ...

Hardware

Paving the way: An accelerator on a microchip ...

Five nanosecond decision-making ...

European partners build efficient pilot production line for photonic chips ...

WekaIO places in top five of the Virtual Institute's IO-500 10 Node Challenge ...

University of Birmingham to deploy largest IBM POWER AI cluster in the UK ...

HPE to acquire BlueData ...

Applications

Investment helps establish Artificial Intelligence-Supercomputing Facility in Edmonton ...

NCSA Director William Gropp and NCSA Affiliate Narayana Aluru named AAAS Fellows ...

SDSC's Comet supercomputer used to create detailed flu virus simulations ...

A new way to see stress - using supercomputers ...

Computational chemistry supports research on new semiconductor technologies ...

A big step toward the practical application of 3D holography with high-performance computers ...

Vanguard to tap Cray for new Stargate Imaging security solution ...

The Cloud

VMware to drive adoption of "as-a-service" model for on-premises data centres with new solutions for AWS outposts ...

Amazon Web Services announces eight new storage services and capabilities ...

E8 Storage partners with Clustar Technology, expanding its global presence ...

Fujitsu adopts Red Hat OpenShift Container Platform for global management decision-making assistance system ...

Red Hat acquires hybrid Cloud data management provider NooBaa ...

Five nanosecond decision-making

'You need a hardware expert who understands what's under the hood so you can restructure your algorithms', said Ali Akoglu of the difficulties matching code to hardware. Systems on chips will allow computer scientists to focus on being drivers, not mechanics. 'Only then do you get optimal performance.' Credit: Dietmar Becker.15 Nov 2018 Tucson - Computer scientists develop algorithms that control everything from unmanned aerial vehicles to desktop computers to the cellphones in our pockets. But it can be complicated to match the code they develop to hardware systems that vary so widely. Researcher Ali Akoglu of the University of Arizona is on a team creating a 'domain-focused advanced software-reconfigurable heterogeneous system on a chip' - a device with a big name to solve a big problem.

"Each of these hardware architectures comes with its own programming environment, and you need a hardware expert who understands what's under the hood so you can restructure your algorithms to overlap the target hardware architecture", stated Ali Akoglu, University of Arizona associate professor in the Department of Electrical and Computer Engineering and at the BIO5 Institute, director of the Reconfigurable Computing Lab and University of Arizona site director of the National Science Foundation Center for Cloud and Autonomic Computing. "Only then do you get optimal performance."

Ali Akoglu is collaborating with researchers from Arizona State University, Carnegie Mellon University and the University of Michigan, and from companies Arm, EpiSys and GDMS, to solve this problem by developing systems on chips, or SoCs, that allow software developers to focus their efforts on designing algorithms and applications, not on matching them to chip structures. They're using a grant from the Defense Advanced Research Projects Agency, or DARPA - the University of Arizona portion of which is $820,000 - to do it.

These new chip-based systems won't just automatically map software to hardware. DARPA wants researchers to design them to be "domain-specific" in order to strike a balance between efficiency and flexibility - that is, still able to complete more than one task, but not so generalized that they sacrifice speed or quality of functions for quantity.

They also must be able to incorporate new applications as technology advances. If a computer scientist develops code for a brand-new function - like sending holograms back and forth via text - the SoC should be able to map the software for that technology onto the hardware of the chip.

The team's answer to DARPA's challenge is a "domain-focused advanced software-reconfigurable heterogeneous SoC", or DASH-SoC. It's a mouthful, but the time spent saying it will be more than made up for in the months of work it could save computer scientists.

"When you bring in a graduate student to work with a new hardware architecture, it takes three to six months for them to learn the programming environment, and another six months to optimize it", Ali Akoglu stated. "When you consider this productivity problem, having a system interface that translates your code to a target architecture at the push of a button is a very ambitious goal."

While computer engineers like Ali Akoglu create algorithms that everyone from heart surgeons to biologists use to improve their ability to predict outcomes, DARPA specifically wants systems for the domain of software radio, which includes applications ranging from cellphones to national security.

There's one more element that makes this new technology stand out: The DARPA grant stipulates that the SoC be able to run five applications at a time, which means balancing the demands of five different priorities as quickly and efficiently as possible. Like a student taking five classes that all involve completing a series of assignments, the chip has to do some careful planning and resource allocation to get each task done for each application.

This is the part of the project Akoglu and his collaborator Umit Ogras from ASU are leading: developing an intelligent scheduler that maps out which physical areas of the chip complete which tasks when. "Intelligent" here means that scheduler will improve over time via machine learning, the way a student might be better able to create an efficient schedule during senior year than freshman year.

"The intelligent scheduler will learn how to schedule the tasks for specialized processors and control the power needed to process them", Umit Ogras stated. "As a result, we will deliver very powerful, energy-efficient and easy-to-use SoCs that can be used in a wide range of communications and radar applications."

DARPA's goal is an intelligent scheduler that takes only five nanoseconds for each decision. Chips with such intelligent scheduling technology don't exist today, so creating them at all is ambitious - creating such a fast system adds an entirely different dimension, Ali Akoglu said.

"That five nanoseconds business is giving me high blood pressure", he joked. "But without setting these aggressive goals, we can't push technology to the next level."

Source: University of Arizona College of Engineering

Back to Table of contents

Primeur weekly 2018-12-03

Quantum computing

University of Southern California scientists find a way to enhance the performance of quantum computers ...

An important step towards completely secure quantum communication networks ...

Quantum computing at scale: Australian scientists achieve compact, sensitive qubit readout ...

Atos launches construction of global R&D Lab to drive innovation in Quantum Computing ...

Focus on Europe

University of Liverpool and IBM sign joint study agreement for research and innovation ...

Atos strengthens computing capacity of national supercomputing centre in Czech Republic with the new BullSequana supercomputer ...

The whole fleet of EU Commission Flagship projects meets for the first time at ICT Vienna ...

Middleware

DDN Storage and CSIR-CEERI enter partnership to provide Artificial Intelligence as a Service solutions ...

Hardware

Paving the way: An accelerator on a microchip ...

Five nanosecond decision-making ...

European partners build efficient pilot production line for photonic chips ...

WekaIO places in top five of the Virtual Institute's IO-500 10 Node Challenge ...

University of Birmingham to deploy largest IBM POWER AI cluster in the UK ...

HPE to acquire BlueData ...

Applications

Investment helps establish Artificial Intelligence-Supercomputing Facility in Edmonton ...

NCSA Director William Gropp and NCSA Affiliate Narayana Aluru named AAAS Fellows ...

SDSC's Comet supercomputer used to create detailed flu virus simulations ...

A new way to see stress - using supercomputers ...

Computational chemistry supports research on new semiconductor technologies ...

A big step toward the practical application of 3D holography with high-performance computers ...

Vanguard to tap Cray for new Stargate Imaging security solution ...

The Cloud

VMware to drive adoption of "as-a-service" model for on-premises data centres with new solutions for AWS outposts ...

Amazon Web Services announces eight new storage services and capabilities ...

E8 Storage partners with Clustar Technology, expanding its global presence ...

Fujitsu adopts Red Hat OpenShift Container Platform for global management decision-making assistance system ...

Red Hat acquires hybrid Cloud data management provider NooBaa ...