Back to Table of contents

Primeur weekly 2017-12-18

Exascale supercomputing

Mont-Blanc 2020 project will pave the way to a European scalable, modular and power efficient High Performance Computing processor ...

A supercomputer will discover our future medicines ...

Quantum computing

Jülich Supercomputing Centre to achieve world record: Quantum computer with 46 qubits simulated ...

DENSO and Toyota Tsusho to conduct a test applying a quantum computer to analyze IoT data with a commercial application ...

IBM announces collaboration with Fortune 500 companies, academic institutions and national research labs to accelerate quantum computing ...

Complete design of a silicon quantum computer chip unveiled ...

Error-free into the quantum computer age ...

Quantum memory with record-breaking capacity based on laser-cooled atoms ...

Physicists from Konstanz, Princeton and Maryland create a stable quantum gate as a basic element for the quantum computer ...

Physicists say rare earth metals could help quantum computers communicate ...

Focus on Europe

Lenovo and Intel to deliver powerful, energy-efficient SuperMUC-NG, next generation supercomputer at Leibniz Supercomputing Centre ...

North Rhine-Westphalia supports expansion of German national supercomputer infrastructure ...

ISC 2018 and PASC18 Conferences to announce partnership ...

Hardware

Intersect360 Research invites to participate in tenth HPC budget map survey ...

BP supercomputer now world's most powerful for commercial research ...

MareNostrum 4, chosen as the most beautiful data centre in the world ...

NCI welcomes $70 million investment in HPC capability ...

Applications

Physicists win supercomputing time to study fusion and the cosmos ...

Artificial intelligence helps accelerate progress toward efficient fusion reactions ...

Johns Hopkins scientists chart how brain signals connect to neurons ...

Artificial Intelligence and supercomputers to help alleviate urban traffic problems ...

ESnet's Petascale DTN project speeds up data transfers between leading HPC centres ...

A computer system needing less time and memory to simulate mechanical systems ...

Drug discovery could accelerate hugely with Machine Learning ...

The Cloud

Murex to offer MX.3 risk, trading and post-trade solutions on the AWS Cloud ...

Fujitsu develops WAN acceleration technology utilizing FPGA accelerators ...

Meituan.com selects Mellanox interconnect solutions to accelerate its artificial intelligence, Big Data and Cloud data centres ...

Mellanox interconnect solutions accelerate Tencent Cloud high-performance computing and artificial intelligence infrastructure ...

Quantum memory with record-breaking capacity based on laser-cooled atoms


This is a cooled and trapped cloud of cold atoms used to realize the quantum memory protocol. The atoms reside in the centre of the vacuum chamber, around which the magnetic coils necessary to trap the atoms are visible. The blue colour is caused by two near-infrared lasers illuminating the atoms and driving a two-photon transition, which results in spontaneous emission of visible blue light. Source: FUW, Mateusz Mazelanik.
15 Dec 2017 Warsaw - The emerging domain of parallelized quantum information processing opens up new possibilities for precise measurements, communication and imaging. Precise control of multiple stored photons allows efficient handling of this subtle information in large amounts. In the Quantum Memories Laboratory at Faculty of Physics, University of Warsaw a group of laser-cooled atoms has been used as a memory which can store simultaneously up to 665 quantum states of light. The experimental results have been published in a prestigiousNature Communicationsjournal.

Every information processing task requires a memory. As any classical computer cannot exist without a RAM memory, quantum computer could not be built without a quantum memory. Quantum memory is a device capable of storage and on demand retrieval of quantum states. The key parameter of such memory is its capacity, in other words the number of qubits (quantum bits) which the memory can effectively process. Simultaneous operation on many qubits is a key to efficient quantum parallel computation, providing new possibilities in the fields on imaging or communication.

Regardless of significant efforts, the on demand generation of many photons remains a key challenge for many experimental groups dealing with quantum information. For a recently widely-used method of multiplexing many single-photon emitters into one network the complexity of experimental systems grows unfavorably with its advantages. Using a quantum memory on the other hand one can generate a group of a dozen photons within seconds rather than years. Among many methods of encoding information about single photons in a quantum memory the spatial multiplexing aided by a single-photon sensitive camera stands out as an effective way to obtain high capacity at low cost.

In the Quantum Memories Laboratory, Faculty of Physics, University of Warsaw, such high-capacity memory has been successfully built. The system now holds a world-record of the largest capacity, as other experimentalists can only harness tens of independent states of light. The heart of the constructed setup comprises a so-called magneto-optical trap (MOT): a group of rubidium atoms inside a glass vacuum chamber is trapped and cooled by lasers in the presence of magnetic field to about 20 microkelvins. The memory light-atoms interface is based on off-resonant light scattering.

In the write-in process the cloud of atoms is illuminated by a laser beam, resulting in photon scattering. Each scattered photon is emitted in random direction and registered on a sensitive camera. The information about scattered photons is stored inside the atomic ensemble in the form of collective excitations - spin-waves which can be on demand retrieved as another group of photons. By measuring correlations between emission angles of photons created during the write-in and read-out process we certify that the memory is indeed quantum and that the properties of generated state of light fail to be described by classical optics. The prototype quantum memory from Faculty of Physics at University of Warsaw now takes two optical tables and functions with the help of nine lasers and three control computers.

The quantum memory created using the funding of the National Science Center in Poland "PRELUDIUM" and the "OPUS" project as well as the Ministry of Science and Higher Education "Diamentowy Grant" project stands out for one more reason. The quantum information about all stored photons resides in a single cloud of cold atoms, and each atom takes part in the storage of each photon, making the memory resilient to a decoherence. This has been confirmed by observing quantum interference of two distinct excitations - differing by just a single quantum number. "This will allow even more complex manipulations of the atomic state, finally to prepare quantum states of light with accurately controlled parameters", explained Prof. Wojciech Wasilewski, head of Quantum Memories Laboratory.

The paper titled " Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection " is authored by M. Parniak, M. Dabrowski, M. Mazelanik, A. Leszczynski, M. Lipka, and W. Wasilewski, and appeared inNature Communications8, 2140 (2017) - DOI: 10.1038/s41467-017-02366-7.

Source: Faculty of Physics University of Warsaw

Back to Table of contents

Primeur weekly 2017-12-18

Exascale supercomputing

Mont-Blanc 2020 project will pave the way to a European scalable, modular and power efficient High Performance Computing processor ...

A supercomputer will discover our future medicines ...

Quantum computing

Jülich Supercomputing Centre to achieve world record: Quantum computer with 46 qubits simulated ...

DENSO and Toyota Tsusho to conduct a test applying a quantum computer to analyze IoT data with a commercial application ...

IBM announces collaboration with Fortune 500 companies, academic institutions and national research labs to accelerate quantum computing ...

Complete design of a silicon quantum computer chip unveiled ...

Error-free into the quantum computer age ...

Quantum memory with record-breaking capacity based on laser-cooled atoms ...

Physicists from Konstanz, Princeton and Maryland create a stable quantum gate as a basic element for the quantum computer ...

Physicists say rare earth metals could help quantum computers communicate ...

Focus on Europe

Lenovo and Intel to deliver powerful, energy-efficient SuperMUC-NG, next generation supercomputer at Leibniz Supercomputing Centre ...

North Rhine-Westphalia supports expansion of German national supercomputer infrastructure ...

ISC 2018 and PASC18 Conferences to announce partnership ...

Hardware

Intersect360 Research invites to participate in tenth HPC budget map survey ...

BP supercomputer now world's most powerful for commercial research ...

MareNostrum 4, chosen as the most beautiful data centre in the world ...

NCI welcomes $70 million investment in HPC capability ...

Applications

Physicists win supercomputing time to study fusion and the cosmos ...

Artificial intelligence helps accelerate progress toward efficient fusion reactions ...

Johns Hopkins scientists chart how brain signals connect to neurons ...

Artificial Intelligence and supercomputers to help alleviate urban traffic problems ...

ESnet's Petascale DTN project speeds up data transfers between leading HPC centres ...

A computer system needing less time and memory to simulate mechanical systems ...

Drug discovery could accelerate hugely with Machine Learning ...

The Cloud

Murex to offer MX.3 risk, trading and post-trade solutions on the AWS Cloud ...

Fujitsu develops WAN acceleration technology utilizing FPGA accelerators ...

Meituan.com selects Mellanox interconnect solutions to accelerate its artificial intelligence, Big Data and Cloud data centres ...

Mellanox interconnect solutions accelerate Tencent Cloud high-performance computing and artificial intelligence infrastructure ...