Back to Table of contents

Primeur weekly 2017-12-04

Quantum computing

Simulating physics ...

Key component for quantum computing invented ...

Quantum-emitting answer might lie in the solution ...

Quantum systems correct themselves ...

NCSA SPIN intern Daniel Johnson published in Classical and Quantum Gravity ...

Focus on Europe

9th Irish Supercomputer List published ...

Gap between research and industry HPC in Ireland widens ...

SURFsara extends its status as Intel Parallel Computing Center for 2018 ...

EXDCI issues Call for Workshops for the European HPC Summit Week 2018 ...

Hardware

Supermicro introduces next-generation storage form factor with new Intel "Ruler" all-flash NVMe 1U server and JBOF ...

New director named at Los Alamos National Laboratory ...

AccelStor empowers all-flash array to advance genomics data analysis ...

New Storage 2020 report outlines vision for future HPC storage ...

Loci adds William Schrader, former PSINet Inc. CEO, to Advisory Board ...

Shantenu Jha named Chair of Brookhaven Lab's Center for Data-Driven Discovery ...

Applications

ORNL-designed algorithm leverages Titan to create high-performing deep neural networks ...

Drought-resistant plant genes could accelerate evolution of water-use efficient crops ...

HPE partners with Stephen Hawking's COSMOS Research Group and the Cambridge Faculty of Mathematics ...

Monopole current offers way to control magnets ...

70Gb/s optical intra-connects in data centers based on band-limited devices ...

Lobachevsky University scientists in search of fast algorithms for discrete optimization ...

High-Performance Computing cuts particle collision data prep time ...

TOP500

High performance computer MOGON II at the Johannes Gutenberg-Universität Mainz among the 100 fastest supercomputers in the world ...

The Cloud

HPE unveils industryis first SaaS-based multi-Cloud management solution for on-premises and public Clouds ...

AccelStor revs up NeoSapphire all-flash array portfolio for next generation Cloud application ...

Quantum-emitting answer might lie in the solution


The coupled device between the photonic crystal nanobeam cavity and perovskite nanocrystals, which overlays with the cavity mode profile. The arrows indicate that the excitation and generated signal are coupled in and out of the device vertically. Credit: Zhili Yang, University of Maryland.
28 Nov 2017 Washington D.C. - Tapping into the quantum properties of photons for opto-electronics requires highly efficient light sources. Lead trihalide perovskite nanocrystals are promising candidates as light sources. Coupling quantum emitters with nanophotonic cavities can significantly boost efficiency, but this approach hasn't been explored with these nanocrystals.

Now, a group of researchers at the University of Maryland and ETH Zurich has demonstrated a simple approach for coupling solution-synthesized cesium lead tribromide (CsPbBr3) perovskite nanocrystals to silicon nitride (SiN) photonic cavities. The resulting room temperature light emission is enhanced by an order of magnitude above what perovskites can emit alone. Doctoral candidate Zhili Yang and others report their results in Applied Physics Letters , from AIP Publishing.

"Our work shows that it is possible to enhance the spontaneous emission of colloidal perovskite nanocrystals using a photonic cavity", Zhili Yang stated. "Our results provide a path toward compact on-chip light sources with reduced energy consumption and size."

To couple the nanocrystals to the photonic cavity, the group drop cast perovskite nanocrystals in toluene solution onto the SiN cavity. They then excited the device with a pulsed laser, leading to photon emission from the nanocrystals.

The use of solutions to make colloidal quantum emitters contrasts with the fabrication of epitaxial materials, a widely used process that involves growing crystalline overlayers on an existing substrate. Instead, Zhili Yang said, one can directly deposit colloidal nanocrystals using solvents more easily on different kinds of wafers.

Similar perovskite materials are already promising in photovoltaic settings, and they also exhibit a number of properties that make them promising candidates for light-emitting devices.

"The nanocrystals have a low density of defects that can trap carriers - electrons and holes, producing a very low non-radiative decay rate and a high photoluminescence efficiency at room temperature", Zhili Yang stated.

Attempts to emit light with epitaxial materials have generally fallen short of efficiently covering the visible light spectrum, with the wavelength range in the blue-green being particularly problematic. The device that the team demonstrated exhibited emission centered at 510 nanometers in the green.

"The large challenge with this method, however, is that you have to find a very optimized concentration (density) of the crystals on the surface of the cavity", Zhili Yang stated. "It can't be too condensed or else it will be detrimental to the cavity and might lead to non-conformity."

The coupled nanocrystals and nanocavity boasted a tenfold improvement in emission brightness compared to the emitters alone. It resulted in a spontaneous emission rate enhancement of 2.9, reflecting a nearly threefold increase in the photon emitting efficiency within the cavity compared to perovskites on unpatterned surfaces.

The results are a boon to opto-electronics, Zhili Yang said, a field that leverages the quantum effects of photons on electronic materials to help build optical circuits that won't suffer from some of the inefficiencies of purely electronic devices, such as heating. Opto-electronic devices also enjoy faster processing speeds and broader signal bandwidths, and may one day be used in quantum computing and quantum communication networks.

The article, "Spontaneous emission enhancement of colloidal perovskite nanocrystals", is authored by Zhili Yang, Matthew Pelton, Maryna I. Bodnarchuk, Maksym V. Kovalenko and Edo Waks. The article has appeared inApplied Physics Letterson November 28, 2017 - DOI: 10.1063/1.5000248.

Source: American Institute of Physics

Back to Table of contents

Primeur weekly 2017-12-04

Quantum computing

Simulating physics ...

Key component for quantum computing invented ...

Quantum-emitting answer might lie in the solution ...

Quantum systems correct themselves ...

NCSA SPIN intern Daniel Johnson published in Classical and Quantum Gravity ...

Focus on Europe

9th Irish Supercomputer List published ...

Gap between research and industry HPC in Ireland widens ...

SURFsara extends its status as Intel Parallel Computing Center for 2018 ...

EXDCI issues Call for Workshops for the European HPC Summit Week 2018 ...

Hardware

Supermicro introduces next-generation storage form factor with new Intel "Ruler" all-flash NVMe 1U server and JBOF ...

New director named at Los Alamos National Laboratory ...

AccelStor empowers all-flash array to advance genomics data analysis ...

New Storage 2020 report outlines vision for future HPC storage ...

Loci adds William Schrader, former PSINet Inc. CEO, to Advisory Board ...

Shantenu Jha named Chair of Brookhaven Lab's Center for Data-Driven Discovery ...

Applications

ORNL-designed algorithm leverages Titan to create high-performing deep neural networks ...

Drought-resistant plant genes could accelerate evolution of water-use efficient crops ...

HPE partners with Stephen Hawking's COSMOS Research Group and the Cambridge Faculty of Mathematics ...

Monopole current offers way to control magnets ...

70Gb/s optical intra-connects in data centers based on band-limited devices ...

Lobachevsky University scientists in search of fast algorithms for discrete optimization ...

High-Performance Computing cuts particle collision data prep time ...

TOP500

High performance computer MOGON II at the Johannes Gutenberg-Universität Mainz among the 100 fastest supercomputers in the world ...

The Cloud

HPE unveils industryis first SaaS-based multi-Cloud management solution for on-premises and public Clouds ...

AccelStor revs up NeoSapphire all-flash array portfolio for next generation Cloud application ...